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Abstract

Proper orthogonal modes (POMs) of displacements are interpreted for linear vibration systems under
random excitation. Excitations are considered for which the Fourier transform is convergent, meaning that
the input must have zero mean, and no sustained sinusoidal component. In such a case, the POMs in
undamped discrete linear symmetric systems can represent linear natural modes if the mass distribution is
known. POMs in one-dimensional distributed-parameter self-adjoint systems can approximately represent
the linear normal modes if the mass distribution is known. Simulation examples are presented. Simulations
show that these ideas are also applicable under light modal damping.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

This paper regards the application of proper orthogonal decomposition (POD) for
experimental modal analysis of homogeneous systems under random excitations.
POD, primarily a statistical formulation, has emerged as a useful experimental tool in dynamics

and vibration. The discrete formulation resembles singular-value decomposition. Our interest is in
the application of POD to the sensed displacements, x1ðtÞ; x2ðtÞ;y;xMðtÞ; at M locations on a
structure. When the displacements are sampled N times at a fixed sampling rate, we can form
displacement-history arrays, such that xi ¼ ðxiðt1Þ;xiðt2Þ;y; xiðtNÞÞ

T; for i ¼ 1;y;M: The mean
values are often subtracted from the displacement histories. In performing the POD, these
displacement histories are used to form an N � M ensemble matrix,

X ¼ ½x1; x2;y; xM �:
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Each row of X represents a point in the co-ordinate space at a particular instant in time. The
M � M correlation matrix R ¼ ð1=NÞXTX is then formed. (If means are removed from the
signals, then R is the covariance matrix, although the divisor should be the statistical degree of
freedom N � 1 rather than N:) Since R is real and symmetric, its eigenvectors form an orthogonal
basis. The eigenvectors of R are the proper orthogonal modes (POMs), and the eigenvalues are the
proper orthogonal values (POVs). In the analysis of turbulence, the POMs have been shown to
represent the optimal distributions of kinetic energy or power, and the POVs indicate the power
associated with these principal distributions [1,2]. Alternatively, the POMs represent the principal
axes of inertia of the data in the measurement space, while the POVs values indicate the mean-
squared values of the data in each axis [3].
The method was applied to turbulence by Lumley [4,5], and has since received considerable

attention from structural dynamicists. POD has been useful in uncovering spatial coherence in
turbulence [4,5,1] and structures [2,6], determining the number of active state variables in a system
[1,2,6], and in uncovering modal interactions [7,8]. Proper orthogonal modes have been treated as
empirical modal bases for discretizing non-linear partial differential equations by Galerkin
projections in turbulence applications [1] and in structural dynamics [9–14], and also for system
identification [15,16].
Cusumano and Bai [6], Davies and Moon [7] and Kust [17] observed that the POMs in their

non-linear structures resembled the normal modes of the linearized system. A recent analysis has
shown that the POMs may indeed converge to linear normal modes (LNMs) in multi-modal free
responses of symmetric linear systems, but only if the mass matrix has the form mI (which can be
achieved by a co-ordinate transformation if the mass distribution is known) and if the system is
lightly damped [3]. This conclusion was also reached with the perspective of singular-value
decomposition [18] and time correlation [25]. Furthermore, the POMs of discretized continuous
one-dimensional systems with lightly damped multi-modal free responses converge in
approximation to the discretized LNMs, again if the mass distribution can be cast as uniform,
and if the discretization is spatially uniform [19]. This result has been tested experimentally
[20,21], and extended to non-uniform discretizations through a weighted POD [21]. These results
provide a fundamental tie between the statistically derived POMs and the geometrically based
LNMs in certain discrete systems.
If POD is to be realized as a viable approach for experimental modal analysis, certain issues

must be overcome. Among the current limitations are the known mass-distribution requirement,
and the restriction to multi-modal free responses. In this paper, we address the latter restriction.
We extend the applicability of POD as a modal analysis tool to uniform-mass systems undergoing
random excitation.
Kerschen and Golinval [18] had addressed POD in randomly excited systems cast in

state variable form with a controller. They found that the state-variable correlation matrix
represented the controllability Grammian. In this paper, we look at the POMs from
the displacement ensemble of vibration systems, and tie POMs to LNMs under certain
circumstances.
In what follows, we summarize the analysis of POD in vibration systems, both discrete

and continuous. We then incorporate responses to a class of random excitations and show
that the POMs converge to the linear natural modes. We finally provide simulation
examples.
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2. POD of multi-modal vibrations

First, we summarize the basic results needed to make our interpretations. The previous analysis
approach of POD applied to impulse responses for discrete parameter systems [3] and for
continuous parameter systems [19] can be used for the random responses. The seed of the result
lies in the normal mode shapes, and what we change here is the response of the modal co-
ordinates. In the previous works, the modal co-ordinates were treated with a free response. Here,
they are treated as a random response.
Next, we summarize the role played by the mode shapes for both lumped-parameter and

distributed-parameter systems. We then address the role of the modal-co-ordinate response under
random excitation.

2.1. Lumped-parameter linear systems

The equations of motion of an undamped, unforced, symmetric M-degree-of-freedom system of
the form M.yþ Ky ¼ 0 can be rewritten through the co-ordinate transformation y ¼M�1=2x as

.xþ Ax ¼ 0; ð1Þ

where A ¼M�1=2KM�1=2 is symmetric [22]. The response can be written in terms of the modes,
such that

xðtÞ ¼ VqðtÞ; ð2Þ

where V ¼ ½v1;y; vM � is the modal matrix of M normal modes, and qðtÞ is the vector of modal co-
ordinates qiðtÞ:
Then the ensemble matrix has the form

X ¼ ½xðt1Þ?xðtNÞ�T ¼ ðVQTÞT ¼ QVT;

where QT ¼ ½qðt1Þ; qðt2Þ;y; qðtNÞ�; as such, Q is the modal ensemble matrix. The correlation
matrix then has the form

R ¼
1

N
XTX ¼

1

N
VQTQVT:

We can check whether a modal vector is actually a POM by post-multiplying the matrix R by a
modal vector. Thus,

Rvj ¼
1

N
VQTQVTvj:

The vector VTvj has elements vTi vj: Since the mass matrix is I in Eq. (1), the orthogonality relation
vTi vj ¼ dij reduces the matrix product to

Rvj ¼
1

N
VQQThj;

where hj ¼ ½0?1?0�T is a vector of zeros except for the jth element, which is one.
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The matrix RQ ¼ ð1=NÞQTQ has elements

1

N

XN

k¼1

qiðtkÞqjðtkÞ:

In the case of undamped free vibration, as long as the frequencies of the modes are distinct, each
element of RQ disappears as N-N except for the diagonal elements, which are the mean-squared
values of the modal co-ordinates, %q2

i ¼ E½q2i �: So for free vibration, RQ-D; a diagonal matrix, as
N gets large. Hence, Rvj ¼ VDhj ¼ %q2

j vj: The eigenvectors of R; and thus the POMs, converge to
the modal vectors.
We are poised to examine the behavior of the qjðtÞ under random excitation, for which the

remaining issue is whether RQ diagonalizes. Before we address this, we review the application to
continuous systems.

2.2. Distributed-parameter linear systems

We summarize a previous analysis of the POMs for LNMs in distributed-parameter systems
[19].
The model of a one-dimensional distributed-parameter system, such as a beam or string of

length l; is

mðxÞ .y þ L1y ¼ 0; ð3Þ

where yðx; tÞ is a displacement, the ‘‘dots’’ represent partial differentiation with respect to time,
mðxÞ is a known mass distribution, and L1 is a self-adjoint linear operator. Letting u ¼ m1=2ðxÞy;
the system can be rewritten as .u þ m�1=2ðxÞL1m

�1=2ðxÞu ¼ 0; or

.u þ L2u ¼ 0: ð4Þ

L2 is self-adjoint. For this system with its boundary conditions, separation of variables leads to
eigenvalues and eigenfunctions fiðxÞ which can be normalized such thatZ L

0

fiðxÞfjðxÞ dx ¼ dij : ð5Þ

The absence of the mass in this integral is critical for connecting the POMs to LNMs.
Suppose we have a set of displacement measurements uðx; tÞ of the system, sampled at co-

ordinates x1;y; xM : This leads to a set of measurements u ¼ ½uðx1; tÞ?uðxM ; tÞ�T: Then
uðx; tÞE

P #M
i¼1 qiðtÞfiðxÞ ¼ fTq; where f ¼ ½f1ðxÞ?f #MðxÞ�T is a vector of the modal functions,

and qðtÞ ¼ ½q1ðtÞ?q #MðtÞ�T is the vector of modal co-ordinates. We will take #M ¼ M in this
discussion. We define a matrix U ¼ ½v1?vM � ¼ ½fðx1Þ?fðxMÞ�T: Thus, the vectors vi ¼
½fiðx1Þ?fiðxMÞ�T are spatial discretizations of the mode shapes fiðxÞ: Then

u ¼ UqðtÞ

relates the discrete displacements of the beam to the discretizations of the mode shapes.
The displacements are sampled at time t1;y; tN : We construct an N � M ensemble matrix

U ¼ ½uðt1Þ?uðtNÞ�T ¼ ½Uqðt1Þ?UqðtNÞ�T; or

U ¼ ðUQTÞT ¼ QUT;
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where again QT ¼ ½qðt1Þ?qðtNÞ� is an M � N matrix. The correlation matrix can thus be built as
R ¼ ð1=NÞUTU ¼ ð1=NÞUQTQUT:
We now check whether vj is an eigenvector of R by examining Rvj ¼ ð1=NÞUQTQUTvj: The

quantity UTvj has elements vTi vj: We assume now that the spatial discretization is evenly spaced.
(A weighted POD has been formulated for unevenly spaced discretizations [21].) Then, vTi vj ¼PM

k¼1 fiðxkÞfjðxkÞEð1=hÞ
R L

0 fiðxÞfjðxÞ dx by the rectangular rule, where h is the spacing of the
spatial discretization. Thus we approximate vTi vjEð1=hÞdij: If this approximation is reasonable,
then the quantity UTvjE½0?0; 1=h; 0?0�T ¼ hj has elements of approximately zero, except the
jth element which is approximately 1=h: The error associated with the rectangular integration
representation of the underlying orthogonality integral is on the order of kh3; where k is
proportional to a characteristic curvature in the integrand [23]. Then RvjEð1=NÞUQTQhj: The
ijth elements of RQ ¼ ð1=NÞQTQ are ð1=NÞ

PN
k¼1 qiðtkÞqjðtkÞ:

Again, in the multi-modal free vibration case [19], qiðtÞ and qjðtÞ with distinct frequencies lead to

lim
N-N

1

N
QTQ ¼ D;

which is diagonal with elements dii ¼
PN

k¼1 qiðtkÞ
2=N; which are the mean-squared values of qiðtÞ:

In such case, Rfj converges approximately to UDhj ¼ Uhjdjj ¼ vjdjj=h: So, for large N; with
evenly spaced data and distinct modal frequencies, the POMs converge approximately to vj; which
are the discretized linear modes. In other words the POMs converge to vj þ ej where ej is an error
vector. Furthermore, the POVs converge to djj=h; which is proportional to the mean-squared
modal co-ordinate.
In this work, we examine the effect of modal co-ordinates under random excitation. Again, the

remaining issue is whether RQ diagonalizes.

2.3. Modal responses under random excitation

Here, we extend the connection between the POMs and the LNMs to the case of zero-mean
random excitation. The goal here is to verify that the modal ensemble matrix RQ ¼ ð1=NÞQTQ is
nearly diagonal, in both lumped mass and continuous parameter systems. If this is the case, then
the same conclusions can be drawn as for the multi-modal free response cases.
In the lumped parameter models, the modal equations of motion are

.xþ Ax ¼ FðtÞ; ð6Þ

and the continuous parameter model is

.u þ L2u ¼ F ðx; tÞ: ð7Þ

Modal analysis can be applied in both cases to yield a set of modal equations of the form

.qi þ o2
i qi ¼ fiðtÞ; ð8Þ

where fiðtÞ ¼ vTi FðtÞ for the lumped parameter case, and fiðtÞ ¼
R l

0 fiðxÞF ðx; tÞ dx for the
continuous parameter case, where i is an index for the modes. Taking the Fourier transform of
Eq. (8), we can write

*qiðoÞ ¼ *HiðoÞ *FiðoÞ; ð9Þ
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provided the Fourier transform *FiðoÞ converges. If fiðtÞ has a constant component or a sustained
sinusoid, the Fourier transform does not converge (although it can be represented with Dirac
delta functions). Thus, we exclude these excitations. As such, we consider random excitations with
convergent, or bounded, Fourier transforms.
The solution to Eq. (8) is thus

qiðtÞ ¼
Z t

�N

hiðt � tÞfiðtÞ dt ¼
Z

N

�N

hiðt � tÞfiðtÞ dt; ð10Þ

where hiðtÞ is the unit impulse response of the ith modal co-ordinate, and can be represented as the
inverse Fourier transform of *HiðoÞ: The form of Eq. (10) takes advantage of the fact that hiðtÞ ¼ 0
for to0 [24]. Time series are finite in practice. If the excitation starts at t ¼ 0; then we can write

qiðtÞ ¼
Z

N

0

hiðt � tÞfiðtÞ dt: ð11Þ

In application to the POD problem in the preceding sections, our concern is whether the
correlation matrix RQ ¼ ð1=NÞQTQ converges to a diagonal matrix with increasing N: The
elements of RQ are

rij ¼
1

N

XN

k¼1

qiðtkÞqjðtkÞ ¼
1

N

XN

k¼1

Z
N

0

fiðtÞhiðtk � tÞ dt
Z

N

0

fjðyÞhjðtk � yÞ dy: ð12Þ

Exchanging the order of the sums, we have

rij ¼
Z

N

0

Z
N

0

fiðtÞfjðyÞ
1

N

XN

k¼1

hiðt � tÞhjðt � yÞ

" #
dt dy: ð13Þ

Assuming zi ¼ zj ¼ 0; and oiaoj; then

lim
N-N

1

N

XN

k¼1

hiðt � tÞhjðt � yÞ ¼ diðt; yÞdij ; ð14Þ

where diðt; yÞ is defined by Eq. (14). As such, we have rij-ridij : Referring to Eq. (12) for the case
of i ¼ j; we can see that ri ¼ E½q2

i � is the mean-squared value of the modal co-ordinate qi:
Hence, for undamped systems with distinct modal frequencies and random excitations with

convergent Fourier transforms, we expect the modal correlation matrix RQ to diagonalize. In
practice, with a finite but ‘‘large’’ N; we expect RQED; where D is diagonal with diagonal
elements equal to the mean-squared values of the modal co-ordinates. Furthermore, systems with
‘‘light’’ modal damping and finite N should ‘‘nearly’’ diagonalize, with dominant diagonal
elements.
With the diagonalization of RQ; the POMs converge to the LNMs in the lumped parameter

case, and the POMs converge to approximations of the LNMs in the continuous parameter case.

2.4. Remarks

The above analysis ties the statistically formulated POMs to the discretization of the linear
normal modes for multi-modal random responses of undamped systems with known mass
distributions. As long as the Fourier transform of F ðtÞ or Fðx; tÞ is convergent, we have no
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restrictions on the random excitations or their distributions. In fact, the formulation here also
takes care of impulse responses, which were studied previously with the perspective of the ensuing
free response.
We emphasize that the above analysis is not valid if the Fourier transform of the excitation is

non-convergent. Examples of such excitations are those with non-zero mean, and those with a
sustained harmonic. For example, if we consider a system excited with a constant applied force,
the steady state response is constant, at the static equilibrium. The static equilibrium vector, which
is generally not one of the LNMs, will be the dominant POM (if the POD is applied without
subtracting the means from the signals). Furthermore, the steady state response to a pure
sinusoidal excitation cannot be used to discern mode shapes (unless the input signal is
incorporated into the POD [18]), although at resonance the resonating mode shape can be
approximated [3].
While a constant or sustained sinusoidal component of the excitation is non-convergent in its

Fourier transform, in practice, the experimenter will find that such signal components do have
bounded fast Fourier transforms. The discrete fast Fourier transform is related to the Fourier
series, which represents constant and sinusoidal signals with finite constants. Observing a spike in
the FFT in the laboratory should be a warning that the continuous-time Fourier transform might
be non-convergent. Indeed, the experimenter does not need to measure the input signal while
applying POD as formulated here. However, an excitation with a non-convergent Fourier
transform on the response will have an adverse effect on the modal extraction, as in the examples
discussed above.
Working with finite N; it is likely that the resulting time series will not have exactly zero mean,

even if a zero mean is expected. It may be advisable to remove the means from the displacement
histories prior to building the ensemble matrix X:

3. Numerical examples

We apply these ideas to the random excitation of three simple systems, a three-mass system, a
cantilevered beam and a hinged–hinged beam, for which theoretical modes are readily available
for comparison.

3.1. Three-mass system

In this undamped example, the mass matrix was M ¼ I; and the stiffness matrix was

K ¼

2 �1 0

�1 2 �1

0 �1 1

2
64

3
75:

This system has eigenvectors v1 ¼ ½0:3280; 0:5910; 0:7370�T; v2 ¼ ½0:7370; 0:3280;�0:5910�T; and
v3 ¼ ½0:5910;�0:7370; 0:3280�T; normalized to length one, and modal frequencies o1 ¼ 0:4450;
o2 ¼ 1:2470; and o3 ¼ 1:8019: The system was simulated with Matlab using the function ‘rand’ to
generate a random excitation. The random excitation value was determined in the calling routine
so that it remained fixed while the internal step-size adjuster was at work. Each mode was excited
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uniformly, i.e., the modal excitation was fiðtÞ ¼ vTi FðtÞ ¼ giaðtÞ such that gi ¼ g: A total of 400
samples were obtained at a time step of 0.14, resulting in four first-mode periods of data. The
mean was removed from the response. The resulting POMs were u1 ¼ ½0:3254; 0:5899; 0:7390�T;
u2 ¼ ½0:7547; 0:3088;�0:5788�T; and u3 ¼ ½0:5697;�0:7461; 0:3447�T; normalized to length one.
The magnitudes of the errors were thus 0.0035, 0.0288, and 0.0286.

3.2. Beam examples

For each numerical simulation, we chose a uniform mass per unit length of mðxÞ ¼ 1; a stiffness
of EI ¼ 1; and a length of L ¼ 1: Simulations were performed on 10 normal modal co-ordinates
with a random excitation defined as in the previous example, and zero damping. Each mode was
excited uniformly, i.e., the modal excitation was fiðtÞ ¼

R l

0 fiðxÞF ðx; tÞ dx ¼ giaðtÞ such that gi ¼ g:
For the numerical simulation of the cantilevered beam, the clamp was at x ¼ 0: For this case,

the modal functions are coshðbixÞ � cosðbixÞ � siðsinhðbix � sinðbixÞÞ; where the successive values
of bi are 1.87510407, 4.69409113, 7.85475744, 10.99554073, 14.13716839, and ð2i � 1Þp=2 for
i > 5; and the values of si are 0.7341, 1.0185, 0.9992, and 1.0000 for i > 3 [22]. The modal
frequencies are oi ¼ b2i

ffiffiffiffiffiffiffiffiffiffiffiffi
EI=m

p
:

The displacements were expanded in a truncated modal series consisting of the first 10 normal
modes. The beam was then ‘‘sampled’’ at 10 equally spaced locations from x ¼ 0:1 to 1. The
vibrations were sampled through approximately four fundamental periods at an interval of Dt ¼
0:018; resulting in 400 time samples.
The success depends on the rectangular-rule inner-product approximation of Eq. (5). With the

current discretization, the rectangular rule uses end values as opposed to midpoints. The discrete
inner products times h of the first five discretized modal vectors are given in Table 1, from which
the approximation of orthogonality can be judged.
Fig. 1 shows the comparison between the first four discretized linear normal modes along with

the POMs computed under the circumstances given. The norms of the errors between these first
five sets of normalized modes and the corresponding POMs were 0.0001, 0.1820, 0.2636, 0.0835,
and 0.0713.
The quality of the results may vary with the situation. Trouble is expected when the amplitudes

of two or more modes are very similar [3], since the eigenvectors of repeated eigenvalues R are
then non-uniquely oriented.
We have also applied the method to a hinged–hinged beam. In putting 10 ‘‘sensors’’ on the

beam away from the endpoints, at the midpoints of 10 equal intervals, the spacing was h ¼ 1=11:
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Table 1

Inner products times h between the first five discretized natural modes of the cantilever beam

v1 v2 v3 v4 v5

v1 1.0000 �0.1812 0.1949 0.0342 �0.0007

v2 �0.1812 1.0000 �0.2001 0.0186 �0.0338

v3 0.1949 �0.2001 1.0000 �0.0559 0.0619

v4 0.0342 0.0186 �0.0559 1.0000 �0.0319

v5 �0.0007 �0.0338 0.0619 �0.0319 1.0000
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Here, the modal functions are fiðxÞ ¼ sinðipxÞ: The inner products between the discretized modal
vectors are, to at least four decimal points, vTi vj ¼ dij=h: The modal frequencies, oi ¼ ip; are
distinct and well spaced.
The vibrations were sampled through 400 time samples at an interval of Dt ¼ 0:0063; resulting

in four fundamental periods. Again, the modal excitation was uniform. Fig. 2 shows the
comparison between the first four sets of modes. The higher modes visually compared as well as
those shown. The norms of the errors between these first four sets of modes were 0.0002, 0.0025,
0.0065, 0.0105, and 0.0865. The mean norm of the error between the 10 computed modes was
0.0281.
The quality of the results for both the cantilevered and hinged beams is similar as with the POD

performed on impulse responses [19]. The results for the hinged beam are more accurate than the
cantilevered beam. Presumably, the finite spatial resolution is responsible for deviation in the
cantilevered beam. The hinged beam has sinusoidal modal functions, and as long as the spatial
resolution meets the Nyquist criterion, we might expect full representation of the sinusoids.
To test the effect of spatial resolution on the cantilevered beam, we did simulations with 40

sensors. The results are improved. For a brief illustration, modes two and three are shown in
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Fig. 1. The first four LNMs of an undamped cantilevered beam are plotted with solid lines, ‘—’. The corresponding

POMs are plotted with symbols, ‘*’. (a) First mode, (b) second mode, (c) third mode, and (d) fourth mode.
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Fig. 3. The benefit of using redundant sensors for effectively better interpolation in the underlying
orthogonality integral has been seen in experiments [20].

3.3. Damping and finite data

For our last examples, we look at the effect of damping. Intuitively, we might expect ongoing
random excitation to continually renew the instantaneous modal participation, such that modal
damping may not be an issue. However, Eq. (14), in its current form, does not guarantee the
diagonalization of RQ in the presence of damping, as N-N: In practice, N is finite. Eq. (14), and
past experience with impulse responses [3], suggest the interpretation to hold if the damping is
light. However, if the damping is ‘‘large’’, particularly if ziX1 and hiðtÞ are non-sinusoidal
functions, we may not expect RQ to approach diagonalization. In comparison, classical
experimental modal analysis also calls for light damping, such that resonances are clearly defined.
Fig. 4 shows the first four identified mode shapes of the hinged beam for the case of modal

damping ratios of 0.05 added to each mode in the simulation. As expected, light damping does not
adversely effect the POD.
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Fig. 2. The first four LNMs of an undamped hinged–hinged beam are plotted with solid lines, ‘—’. The corresponding

POMs are plotted with symbols, ‘*’. (a) First mode, (b) second mode, (c) third mode, and (d) fourth mode.
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Fig. 3. The second and third modes of an undamped cantilevered beam are plotted with solid lines, ‘—’. The

corresponding POMs drawn from 40 equally spaced sensors are plotted with asterisks, ‘*’. (a) Second mode and (b)

third mode.
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Fig. 4. The first four LNMs of a hinged–hinged beam are plotted with solid lines, ‘—’. The corresponding POMs

computed from response data with modal damping of z ¼ 0:05 for each mode are plotted with symbols, ‘*’. (a) First

mode, (b) second mode, (c) third mode, and (d) fourth mode.
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Fig. 5 shows the first four identified modes of the hinged beam for the case of critical damping
imposed on each mode during the simulation. The deviation of the POMs from the LNMs is small
for the first mode, but becomes substantial as the modes increase, indicating the importance of a
sinusoidal characteristic in the modal impulse-response functions hiðtÞ; and their role in Eq. (14).

4. Conclusion

We have a relationship between the proper orthogonal modes and modes of vibration of
homogeneous lumped parameter and continuous parameter systems under random excitation.
This extends previous results for multi-modal free responses (or impulse responses).
Under random excitation with a convergent Fourier transform, which means zero mean and no

sustained sinusoidal components, the POMs converge to the LNMs in lumped parameter models,
and the POMs approximate the discretized LNMs of distributed systems if the discretization is
evenly spaced. The quality of the approximation is partly dependent on how well the integral
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Fig. 5. The first four LNMs of a hinged–hinged beam are plotted with solid lines, ‘—’. The corresponding POMs

computed from response data with modal damping of z ¼ 1 for each mode are plotted with symbols, ‘*’. (a) First

mode, (b) second mode, (c) third mode, and (d) fourth mode.
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orthogonality property of the modal functions transfers to the discretized modal vectors, for
which the inner product can be seen as proportional to a rectangular-rule integration.
The mass distribution must be known to make these conclusions, and the problem must be

formulated in displacement co-ordinates defined such that the associated mass distribution is
uniform.
The results were tested on a three-mass system, a cantilevered beam and a hinged–hinged beam.

The role of damping was briefly touched through examples. The theory supports the usage of
POD for estimating LNMs when the modal damping is ‘‘light’’. When the damping is large, the
POMs deviate from the LNMs.
In short, we have worked toward establishing a bridge between statistically derived POMs and

the geometry of normal modes, in the case of random excitation. This complements a recent tie
made for impulse responses. The broad goal is to open the door for POD to be applied as a modal
analysis tool. To make this goal a reality, developments are needed to overcome the requirement
for a known mass distribution.
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